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Abstract—Commit messages record code changes (e.g., feature modifications and bug repairs) in natural language, and are useful for

program comprehension. Due to the frequent updates of software and time cost, developers are generally unmotivated to write commit

messages for code changes. Therefore, automating the message writing process is necessitated. Previous studies on commit

message generation have been benefited from generation models or retrieval models, but the code structure of changed code, i.e.,

AST, which can be important for capturing code semantics, has not been explicitly involved. Moreover, although generation models

have the advantages of synthesizing commit messages for new code changes, they are not easy to bridge the semantic gap between

code and natural languages which could be mitigated by retrieval models. In this paper, we propose a novel commit message

generation model, named ATOM, which explicitly incorporates the abstract syntax tree for representing code changes and integrates

both retrieved and generated messages through hybrid ranking. Specifically, the hybrid ranking module can prioritize the most accurate

message from both retrieved and generated messages regarding one code change. We evaluate the proposed model ATOM on our

dataset crawled from 56 popular Java repositories. Experimental results demonstrate that ATOM increases the state-of-the-art models

by 30.72 percent in terms of BLEU-4 (an accuracy measure that is widely used to evaluate text generation systems). Qualitative

analysis also demonstrates the effectiveness of ATOM in generating accurate code commit messages.

Index Terms—Commit message generation, code changes, abstract syntax tree

Ç

1 INTRODUCTION

WITH software growing in size and complexity, code
hosting platforms, e.g., GitHub [1] and Tortois-

eSVN [2], have been widely adopted in the life cycle of soft-
ware development. These platforms greatly reduce time
cost and maintenance cost. However, during the software
updating, developers are required to submit commit mes-
sages to document code changes. The commit messages,
which summarize what happened or explain why the
changes were made, are usually described in natural lan-
guage; thus the messages can help developers capture a
high-level intuition without auditing implementation
details. Hence, high-quality commit messages are essential
for developers to comprehend version evolution rapidly.

However, manually writing commit messages is time-
consuming and labour-intensive. First, until now, there is
no specification regarding the writing format of commit

messages when developers submit commits, and develop-
ers tend to follow their own writing styles. Second, develop-
ers tend to commit without writing the corresponding
messages to make readers difficult to extract the precise
description behind code changes manually. For example,
according to the report [3] in SourceForge [4], an Open
Source community dedicated to creating, collaborating and
distributing projects, there are around 14 percent of commit
messages in more than 23,000 open-source Java projects that
are empty. Among our collected dataset which contains the
top-ranked �60 projects in terms of star numbers on
GitHub, e.g., Junit5 [5] and Neo4j [6], we find that meaning-
less commit messages1 also account for around 10 percent
of the entire collected commits. Therefore, automated gener-
ation of commit messages for code changes is necessitated
and meaningful for software developers.

Generating accurate commit messages by given code
changes is a challenging task. Several approaches have been
exhibited for generating commit message automatically. The
rule-based methods, e.g., DeltaDoc [9] and ChangeScribe [10],
are able to summarize code changes based on specific custom-
ized rules. However, these proposed rules could not easily
cover all the cases and the generated messages are verbose,
failing to capture the semantics behind a change [7]. To deal
with this limitation, Jiang et al. [8] proposed a generation-
based approach, which adopts a neural machine translation
(NMT) model for translating code changes into commit mes-
sages. However, the NMTmodel treats code as a flat sequence
of tokens, which ignores the syntactic and semantic informa-
tion behind programs, thus fail to learn the semantics behind
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1. Meaningless refers to empty, non-ASCII, merge and rollback
commits.

1800 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 5, MAY 2022

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on October 09,2025 at 07:34:40 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5598-4006
https://orcid.org/0000-0002-5598-4006
https://orcid.org/0000-0002-5598-4006
https://orcid.org/0000-0002-5598-4006
https://orcid.org/0000-0002-5598-4006
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-8513-6836
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-9477-4100
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
https://orcid.org/0000-0001-7300-9215
mailto:shangqin001@e.ntu.edu.sg
mailto:yangliu@ntu.edu.sg
mailto:gaocuiyun@hit.edu.cn
mailto:ecnuchensen@gmail.com
mailto:lynie8@cse.cuhk.edu


the code changes. Some other researchers [7], [11] attempt to
reuse the existing commit messages in the collected dataset by
Information Retrieval to achieve the best performance. How-
ever, the retrieval-based approaches may achieve promising
performance on similar programs, but are limited by the
poorer performance on the programs that are very different
from the retrieved database. For example, in Fig. 1, the mes-
sage produced by retrieval-based approach, i.e., NNGen is
unrelated to the code changes. Furthermore, Fig. 2 shows the
retrieved commit of the commit in Fig. 1, where contains two
parts, separating by a black line. We can see that the first part
is similar to the code changes in Fig. 1, but the retrieved mes-
sages (e.g., delimit, payload, and filter) are from the second part
of code changes. Hence, the retrieval-based approach has no
capacity to produce the exact commit messages on the dissim-
ilar programs. Considering retrieval-based and generation-
based techniques both have their merits, one intuition is to
combine both for generating high-quality commit messages.

To this end, we propose a novel commit message genera-
tion model, named ATOM (Abstract syntax Tree-based
cOmmit Message generation) for better commit message
generation. ATOM contains three modules, 1) a generation
module, which encodes the structure of changed code, i.e.,
Abstract Syntax Tree (AST), to enrich the semantic represen-
tation; 2) a retrieval module, which retrieves the most simi-
lar commit message based on the text-similarity; 3) a hybrid
ranking module, which learns to prioritize the commit mes-
sages generated by generation and retrieval modules to fur-
ther enhance the semantic relevance to the corresponding
code changes. To evaluate our proposed ATOM, we crawl
and build a new benchmark since AST cannot be con-
structed in the previous benchmarks [8]. We quantitatively
evaluate ATOM on our crawled benchmark, including
�160k commits in total. Extensive experimental results
demonstrate that ATOM can significantly outperform the
state-of-the-art approaches by increasing at least 30.72 per-
cent in terms of BLEU-4 score [12] (an accuracy measure
that is widely used to evaluate text generation systems).
Furthermore, ATOM can enhance the performance of its
generation module by 42.99 percent by our well-designed
hybrid ranking module.

The main contributions can be summarized as follows:

� We propose a novel generation module based on
AST from code changes, named AST2seq, to better
capture code semantics and encode code changes.

� We design a hybrid ranking module to enhance the
output of generation modules, by providing the
most accurate commit messages among the gener-
ated and retrieved results.

� We provide a new and well-cleaned benchmark,
including complete function-level code snippets of
�160k commits from 56 java projects. We clean the
benchmark by filtering out meaningless (e.g., empty,
non-ASCII, merge) commits and make the code [13]
and benchmark [14] public to benefit community
research.

� Extensive quantitative and qualitative experiments
including a human evaluation demonstrate the effec-
tiveness and usefulness of our proposed model.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some basic knowledge about commits and
neural networks. Then we describe the details about ATOM
in Section 3. Experimental results, human evaluation, and
examples are conducted in Section 4. Section 5 gives some
discussion about ATOM, followed by the related work in
Section 6. Finally, Section 7 concludes this paper.

2 MOTIVATION AND BACKGROUND

In this section, we first introduce several features relevant to
the commit, the motivation of our model design, and some
deep learning models/mechanisms used in our paper.

2.1 Commit, diff, and Commit Messages

Commits are used in Git [1] to record the changes between
different versions. As shown in Fig. 1, a commit usually
contains a commit message and a change. The commit mes-
sage is written by developers in a textual format to facilitate
the understanding of current changes and the code change
is called diff to characterize the difference between two
code versions. Usually, a diff may contain one or multiple
chunks with file paths, which can be found at a red rectan-
gle in the upper part in Fig. 1, along with the identifier “diff
–git“ to indicate the changed file name. The modified codes
are wrapped by ”@@” in a chunk with the negative sign ’-’
or positive sign ’+’ with a line number to denote the deleted
or added line of code. Hence, we can summarize the commit
in Fig. 1, in “FetchPhase.java file“, there is one line of change
at line number 380. We refer to the pair of diff and its cor-
responding message as a commit in this work.

Fig. 1. Example of the retrieved message by NNGen [7], generated mes-
sages by NMT [8], and the proposed ATOM for one code change of the
commit 41528c0813fe72162408051e3af29ac42b4708f7.

Fig. 2. The code change of retrieved commit by NNGen [7] with its id
c4fe7d3f7248223d5174b36fd4e1678217a6a6ed.
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2.2 Motivation

Existing studies on commit message generation [8], [15],
[16] generally treat the code changes as a sequence of code
tokens and ignore the hierarchical code structure informa-
tion. The work in other program comprehension tasks such
as program vulnerability identification [17], function name
prediction [18], and source code summarization [19], [20],
have utilized code structure such as Abstract Syntax Tree
(AST) to learn code semantics and good performance has
been demonstrated. Thus, in this paper, we aim at exploit-
ing AST for better-representing code changes. Since code
structures of code changes cannot be directly obtained by
parsing functions, the usage of ASTs for the commit mes-
sage generation task is more challenging. To well capture
the semantics of long AST paths, we determine to use bi-
directional LSTM [21] which shows effectiveness on repre-
sentation learning of long-term sequences. However, a
potential issue with bi-directional LSTM model is that the
model needs to compress all the necessary information of
the paths into a fixed-length vector [22]. To alleviate the
issue, we follow the previous studies [20], [23] to use the
attention mechanism since attention can focus on some
important paths to represent code changes.

2.3 Abstract Syntax Tree (AST)

An abstract syntax tree is a high abstraction of source code,
which is a tree structure and serves as the intermediate
representation of program language. An AST usually con-
tains leaf nodes that represent identifier and literal in the
code and non-leaf nodes which can represent some syntac-
tic structure within codes. Specifically, Fig. 4 shows a simple
AST with the code snippet in Listing 1, where identifier
name e.g., “str“, “ATOM“ or type e.g., “int“, “String“ are
represented by the values of leaf nodes and non-leaf nodes
e.g., “ExpressionStmt“, “ForStmt“ tend to have more syn-
tactic information. We can get a total of 106 different non-
leaf nodes with JavaParser [24], which is a tool used for
extracting ASTs in Java language. Adopting AST in code
comprehension has been proved to get the state-of-the-art
performance, such as code2seq [20], code2vec [23], Deep-
Com [25], CRF [26], Devign [17].

2.4 Encoder-Decoder Model

The basic structure of NMT [27] used to translate source
sequences into targets is encoder-decoder, as shown in
Fig. 3. The feature vectors generated by encoder are fed into

the decoder to generate target sequences. Usually, it consists
of two RNNs [28] with built-in LSTM cells [29] and attention
mechanism [30], [31] for translation.

Listing 1. A Simple Java Code Snippet

public void printString(){

String str = “ATOM”

for(int i = 0; i < 10; i++){

print(str);

}

}

2.4.1 Recurrent Neural Network (RNN)

RNNs are widely used to capture information from time-
series data as their chain-like natures. The loop contained in
RNNs allows information to be passed from one-time step
to the next. At each time t, the unit in RNNs takes xt and the
hidden state ht�1, which is produced by previous time t� 1
as input to predict the current output yt. The chain-like
structure enables RNNs to learn information from the past,
however, they also suffer from long-term dependencies.
Since RNNs are unable to connect information from further
back and cannot handle long sequences, some variants e.g.,
Long Short-term Memory (LSTM) [29] and Gated Recurrent
Unit (GRU) [32] are proposed.

2.4.2 Long Short-Term Memory (LSTM)

LSTMs introduced by Hochreiter and Schmidhube [29] are
explicitly designed with a memory cell to remember impor-
tant information. The gating mechanism in the memory cell
helps LSTMs selectively ‘forget’ unimportant information,
thus allowing more space to take in information and con-
trols when and how to read previous information and write
new information. In this way, the memory cell will preserve
more long-term dependencies than vanilla RNNs. Hence,
RNNs built with LSTMs are widely used for sequence mod-
els to capture information.

2.4.3 Attention Mechanism

Attention is proposed to boost the performance of Encoder-
Decoder further, as it utilizes all the hidden states of the
input sequence rather than the final hidden state as a con-
text vector for the decoder. It creates an attention mapping
matrix between each time step of the decoder output to the

Fig. 3. An encoder-decoder model with an attention mechanism.
Fig. 4. The AST compiled from Listing 1.
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encoder hidden states. The attention weights are trained by
a forward neural network to align the scores between the
encoder states and the decoder outputs. This means, for
each output, it has access to the entire input sequence and
dynamically selects specific elements from the input. Hence,
the attention mechanism allows the decoder to focus and
place more Attention on the relevant parts of the input. The
Bahdanau [30] or Luong [31] Attention has been widely
adopted into neural machine translation [33], reading com-
prehension [34] and computer vision [35].

2.5 Convolutional Neural Network (CNN)

Consisting of Convolutional Layer, Pooling Layer and
Fully-Connected Layer, Convolutional Neural Networks
(CNNs) are one of the most common Deep Neural Network
architectures. The convolution operations apply kernels to
extract features from the feature maps, which allow the net-
work to capture high-level abstract information with a
reduced number of parameters. In image processing tasks,
for instance, the convolution layers can learn edges, patterns
and shapes after training. Similarly, CNN can also be
applied to natural language processing tasks. In previous
work [36], [37], CNN-based neural ranking models are
trained to learn high-level sentence matching patterns.

3 OUR APPROACH (ATOM)

In this section, we provide the overview of our approach
ATOM and detail each of the modules.

3.1 Overview

Fig. 5 shows the architecture of our framework, which con-
sists the following components.

� Preprocessing Module. The commit message and code
changes are processed separately. We extract AST
paths corresponding to the code changes by retriev-
ing the completed functions in the repository. We
also use the first sentence with lemmatization from
the commit message as the target sentence to repre-
sent the entire commit message.

� Generation Module. We name our generation module
as AST2seq and encode AST paths from diffs with
BiLSTM to represent code changes and followed a
decoder with an attention mechanism to generate a
new messagemsgg.

� Retrieval Module. The retrieval module uses a “diff-
diff“ match to retrieve the most relevant commit
messages. This approach matches diff with all
diffs in the training set and get the most relevant
messagemsgt based on the cosine similarity.

� Ranking Module. To incorporate the retrieval results
into the generation module, we train a CNN to adap-
tively rank the generated message msgg and the
retrieved messagemsgt.

At the prediction phase, when a new code change
arrives, ATOM generates the corresponding commit mes-
sage with the trained generation module and ranking mod-
ule, as shown in Fig. 5b.

3.2 Preprocessing Module

We preprocess code changes and commit messages sepa-
rately for preparing the input of ATOM.

3.2.1 Code Changes

We first divide code changes diffs into added and deleted
groups based on the corresponding sign, i.e., “+” and “-”.
Then we tokenize the diffs with pygments [38], and
remove meaningless tokens such as punctuations. Conse-
quently, we obtain a list of tokens for the added code and
deleted code, denoted as Wþ and W� respectively, where
Wþ=� ¼ fw1; w2; . . . ; wig and i is the ith token in the
changed code.

The basic compilation unit [39], containing a single class
definition and wrapped functions, is needed to extract AST
paths based on the diffs. Hence, we retrieve completed
functions of diffs denoted as added function and deleted
function. We use Ctags [40] with file paths and modified
line numbers containing in diffs to retrieve completed
functions in the repository and then parse them to obtain
ASTs with JavaParser [24]. As all tokens belonging to Wþ=�

are the values of leave nodes in an AST, we search the short-
est distance2 for any two tokens, wi and wj in Wþ=� and
denote the path as x ¼ fwi; n1; . . . ; nl; wjg, where nl means
the lth non-leaf node. Following this procedure, we finally
obtain AST paths for the whole added/deleted code, indicated
as a set of Xþ=� ¼ fxþ=�1 ; . . . ; x

þ=�
p=k g where p, k are the total

number of AST paths respectively.

3.2.2 Commit Messages

We extract the first sentence from the commit message as
the target sequence since the first sentence is often the sum-
mary of the entire commit [8], [41], [42]. We split the tokens
with underlines “ ” and replace file names and digits with
unique placeholders “<FILE>” and “<NUMBER>” respec-
tively. We also lemmatize each word into its base form by
using the NLTK toolkit [43] to reduce the vocabulary set.
The lemmatized message is denoted as M ¼ fy1; y2; . . . ; yng
where n is the token length of the message.

3.3 Generation Module

Prior work on commit message generation treated diffs as a
flat sequence of tokens, which is limited by long sequences

Fig. 5. Architecture of ATOM.

2. Here the shortest distance refers to the minimum edges between
two corresponding leave nodes.
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and ignores the code structure, e.g., Abstract Syntax Trees
(ASTs) of the diffs, to capture the semantics. AST is an
abstraction of code and has been proved useful in represent-
ing code semantics [20], [23], [25]. However, the AST-based
approaches mostly extract ASTs on the completed functions
to understand the functionality of codes. In our generation
module, we extract the AST paths based on the diffs for rep-
resenting code changes. Compared to the sequence-based
approaches, our method can generate messages with longer
diffs and we name as AST2seq. The entire architecture of
AST2seq is illustrated in Fig. 6, involving three main compo-
nents sequentially: AST Encoder for encoding each AST path
into its vector representation; Attention for dynamically focus-
ing on the relevant AST paths; andMessage Decoder for gener-
ating corresponding commit message of the code change.

3.3.1 AST Encoder

Given a set of added and deleted AST paths X ¼
fxþ=�1 ; x

þ=�
2 ; . . . ; x

þ=�
p=k g, where x 2 X can be represented as

fwi; n1; . . . ; nl; wjg and p; k are the added and deleted AST
paths. We encode each path x with a bi-directional LSTM to
create a vector representation z. Here we use bi-directional
LSTM is to expect the bi-directional LSTM can capture the
long-term semantics in each AST path.

� Path Representation. The types of nodes e.g.,
“ForStmt“, “IfStmt“ that make up an AST path x is
limited to 106 and we represent these node types
with an embedding matrix Enodes and then encode
the path e.g., fw�i ; n�1 ; n�2 ; w�j g in Fig. 6 into a bi-
directional LSTM to obtain the dense representation
hwi

; . . . ; hwj
and use the final states of LSTM as path

representation

hwþ
i
; . . . ; hwþ

j
¼ LSTMðEnodes

wþ
i

; . . . ; Enodes
wþ
j
Þ (1)

path featþ ¼ ½h 
wþ
i
;h!

wþ
j
� (2)

hw�
i
; . . . ; hw�

j
¼ LSTMðEnodes

w�
i

; . . . ; Enodes
w�
j
Þ (3)

path feat� ¼ ½h w�
i
;h!w�

j
�: (4)

� Leaf Representation. As the values of start leaf node wi

and end leaf node wj of an AST path also appear in
the diff, we incorporate them for representing a
completed path. We split the tokens of the values in
leaf nodes e.g., “onOrAfter“ in Fig. 6 into subtokens,
“on“, “or“, “after“ and then combine the embed-
dings of these subtokens with summation to repre-
sent a leaf token

leaf featwþ ¼
X

s2splitðwþÞ
Esubtokens

wþ ½s� (5)

leaf featw� ¼
X

s2splitðw�Þ
Esubtokens

w� ½s�: (6)

To represent a completed path xþ=�, we aggregate the
path representation and leaf representation by employing a
fully connected layer

zþ=� ¼ layerð½leaf feat
w
þ=�
i

; path featþ=�; leaf feat
w
þ=�
j

�Þ:
(7)

Finally, we concatenate p added and k deleted paths of vector
z for representing a diff

Z ¼ ½zþp ; z�k �: (8)

3.3.2 Attention

Given a set of added and deleted AST path representations
Z ¼ fz1; z2; . . . ; zpþkg, where pþ k is the summation of added
and deleted paths, we need to focus on some important paths
which can capture the information to represent the entire
code changes. Hence, attention is needed to learns how
much focus “attention” should be given to each AST path.

Fig. 6. Architecture of AST2seq with the example in Fig. 1, where added and deleted function denote the completed functions retrieved from the
diff. The highlight path in added or deleted AST is one of paths extracted from tokens, e.g., indexSettings, onOrAfter in diff and n

þ=�
l is the non-

leaf node, e.g., “ForStmt“, “Binary Expression“.
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We use Luong Attention Mechanism [31], which is shown in
the Equation (10). During decoding period, the attention
will learn the weight distribution over these paths to cap-
ture the important paths.

3.3.3 Message Decoder

We take the average of vector representations of added and
deleted paths, i.e., Z ¼ fz1; z2; . . . ; zpþkg, as an initial hidden
state of the decoder, that is

h0 ¼ 1

pþ k

Xpþk
i¼1

zi: (9)

At each decoding step t, a context vector ct is computed
based on Z and current hidden state ht in the decoder

at ¼ softmaxðhtWaZÞ; ct ¼
Xpþk
i

at
izi: (10)

at is the variable-length alignment vector whose size equals
the number of added and deleted paths. Then ct and ht are
combined to predict the current token yt [31]

pðytjy < t; z1; . . . ; zpþkÞ ¼ softmaxðWstanhðWc½ct;ht�ÞÞ:
(11)

The loss function we adopted in AST2seq is softmax cross
entropy with logits

Loss ¼ ylog ð elogitsP
r e

logits
Þ; (12)

where r is the commit message vocabulary size, y is the true
token of message and logits is the output of decoder
module.

3.4 Retrieval Module

The retrieval module aims at retrieving relevant commit
messages from the training set. We adopt a “diff-diff”
match for the retrieval. Specifically, we first index all diffs
in training set with sklearn [44]. Then for each diff in the
validation and test sets, we compute the cosine similarity in
the training set based on their tokens of tf-idf scores [45],
and keep the most relevant one commit message (first-
ranked) from the training set. Term frequency (TF) and
inverse document frequency (IDF) can be computed by the
following equation:

tfi;d ¼ ni;dP
i2W ni;d

idfðiÞ ¼ log
Ndiff

dfi

� �
; (13)

where ni;d is the number of ith token in the d andW is the set
of distinctive tokens. In the second equation, dfi is the num-
ber of diffs that contains ith token in the entire diffs and
Ndiff is the total number of diffs.

The retrieved commit message serves as one candidate
for the final generated message, and will be fed into the
ranking module together with the message produced by the
generation module.

3.5 Hybrid Ranking Module

From the retrieval module (described in Section 3.5) and
generation module (described in Section 3.4), we can get
two commit message candidates y 2 fmsgt;msggg where
msgt is the first-ranked retrieved commit message and msgg
is the generated message. To predict which candidate is bet-
ter, we can train a binary classifier based on popular models
such as XGBoost [46] and LSTM [29]. However, since diffs
may contain tokens that tend to appear in the generated
messages, e.g., tokens related to function name and variable
name, the relevance between diffs and candidate mes-
sages would be useful for the final message prediction.
Inspired by Liu et al. [47], we design a similarity matching
matrix to measure the relevance between diff and the cor-
responding candidate message, and adopt ConvNet model
to learn their relevance score. Experiments in Section 4.3.4
show that ConvNet outperforms typical classifiers (e.g.,
XGBoost [46] and LSTM [29]).

3.5.1 Similarity Matching Matrix

For any diff d, we first looks up embeddings for tokens in
d and y respectively, denoted as EðdÞ ¼ ½d1; d2; . . . ; dLd

� and
EðyÞ ¼ ½y1; y2; . . . ; yLy � where Ld and Ly are the lengths of d
and y respectively. Note that the embedding matrixes for
diffs and messages are trained separately, but their
dimension sizes are equal. The interaction matching matrix
D is computed by the following equation:

D ¼ EðdÞ �E>ðyÞ; (14)

where D has the dimension with ðLd; LyÞ and is used as the
input of ConvNet to predict a matching score.

3.5.2 ConvNet Model

ConvNet is designed to find the correlation between diff

and message and give a better output among commit mes-
sage candidates which contains convolution and max-pool-
ing operations on the similarity matching matrix D. Let Cin

denote the number of input channels, H is the height of
input plane and W is width, which in our initial settings
equal to 1, Ly and Ld respectively. The convolution opera-
tion outðCoutÞ on the input input with size ðCin;H;WÞ and
output size ðCout;Hout;WoutÞ can be expressed as

outðCoutÞ ¼ sðbiasðCoutÞ þ
XCin�1

k¼0
weightðCout; kÞ � inputðkÞ;

(15)

where s is the activation function, and � is the valid dot
product operator. Max-pooling operation with input size
ðC;H;W Þ is conducted after the convolution operation,
which can be expressed as

outðC; h; wÞ ¼ maxm¼0;...;kH�1maxn¼0;...;kW�1
inputðC; stride½0� � hþm; stride½1� � wþ nÞ; (16)

where ðkH; kWÞ is the kernel size and stride½�� is the tuple of
the sliding blocks over the input, stride½0� and stride½1� rep-
resent the block height and width correspondingly. Finally
we feed the output produced by ConvNet into a fully con-
nected layer to compute the relevance score between diff
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d and message y. We use Mean Square Error Loss func-
tion [48] to optimize the loss values in the form of

Loss ¼ jY 0 � Y j2; (17)

where Y 0 is the output of ConvNet and Y is true relevance
score.

3.5.3 Training for ConvNet

One challenging part in the hybrid ranking module is how
to well define the true relevance scores Y between diffs
and corresponding candidate messages. One possible solu-
tion is to manually evaluate these candidates, however, the
time and labour cost would be very intensive and it is not
applicable for end-to-end training. To enable an end-to-end
training process, we propose to build upon the evaluation
metrics, e.g., BLEU-4 [47], [49]. Specifically, we score these
two candidate messages by comparing them with the
ground truth using BLEU-4, and the scores will serve as our
optimization target Y for the model train. The trained Con-
vNet can predict the commit message from fmsgt;msggg,
where a higher score means higher relevance of the message
to the diff.

4 EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the
effectiveness of ATOM and compare it with some state-of-
the-art approaches.

4.1 Setup

4.1.1 Experimental Benchmark

The dataset utilized in previous works [7], [8], [50] contains
no commit ids or complete functions and we can not use
directly as ASTs are not available. We crawled 56 popular
projects including Neo4j [6], Structs [51], Antlr4 [52] from
GitHub based on the “project stars“. The raw messages
from this dataset are quite noisy since some commits are
empty or contain non-ASCII messages. Furthermore, the
merge or rollback commits may contain too many lines,
which is not suitable for the generation module. So we filter
them out to eliminate unrelated information and remain
with 628,887 commits. Additionally, some commits related
to project initialization and fundamental functionality
updating contain many changes, we remove them as well.
Specifically, we set the thresholds of chunks as 5 and leave
with 438,665 commits. As we need to extract the modified
ASTs from java functions so we keep commits with .java
files and remain 197,968 commits. After removing message
length greater than 20 and the same contents of the com-
mits, we keep �160k samples finally and similar to Jiang
et al. [8]’s work, randomly select 10 percent for testing, 10
percent for validation and the remaining for training. For
more details about our benchmark, please refer to
Section 5.2.

4.1.2 Experimental Settings

For AST2seq in the generation module, the max number of
paths in added and deleted ASTs are set to 80 (with more
details illustrated in Section 4.3.3). The embedding sizes for

subtokens, paths and target sources are defined as 128. The
bidirectional LSTM is utilized for encoder layer and LSTM
is used for the decoder. All dimensions of the hidden states
in the encoder and decoder are fixed to 256. The probability
of dropout [53] is set as 0.4 to avoid overfitting. We set the
number of epochs equal to 3,000, along with the batch size
as 256 and patience , a threshold to terminate training for
early stopping, as 20. The learning rate is equal to 0.0001.
During testing, we use beam search with beam width as 5
since it has proven useful in sequence prediction with recur-
rent neural network [54]. For ConvNet training, we adopt a
2-D convolutional layer with the number of kernels defined
as 16 and kernel size as ð3; 3Þ, followed by a ReLU function
and a max-pooling layer with stride size equal to ð2; 2Þ.
After the max-pooling operation followed by fully con-
nected layers to convert the vector into score values. The
optimizer we choose for AST2seq and ConvNet is
Adam [55]. We use Tensorflow 1.12 [56] and Pytorch
1.4 [57] for our model training. Hyperparameters such as
learning rate, embedding size, encoder and decoder layer
numbers, and kernel sizes are tuned with grid search on the
validation set [58]. The remaining hyperparameters (e.g.,
beam width and batch size) are configured the same as
those in Code2seq [20]. The experiments have been con-
ducted on servers with 36 cores and 4 Nvidia Graphics
Tesla P40 and M40.

4.1.3 Evaluation Metrics

We evaluate our proposed ATOM with widely-used auto-
matic metrics such as BLEU-N [12], ROUGE-L [59], and
Meteor [60]. These metrics have been proved in measuring
text similarities between the produced messages and
ground truths.

BLEU-N computes the n-gram precision of a candidate
sequence to the reference, with a penalty for overly short
sentences. BLEU-1/2/3/4 correspond to the scores of unig-
ram, 2-grams, 3-grams and 4-grams, respectively

BLEU �N ¼ BP � exp
XN
n¼1

wnlogpn

 !
; (18)

whereN ¼ 1; 2; 3; 4, uniform weights wn ¼ 1=N , and

BP ¼ 1; if c > r:
e1�r=c; if c 	 r:

�
(19)

where c is the length of the candidate sequence and r is the
length of the reference sequence.

ROUGE-L provides F-score based on Longest Common
Subsequence (LCS). It compares the similarity between two
given texts in automatic summarization evaluation.

Meteor modifies the precision and recall computation,
replacing them with a weighted F-score based on mapping
unigrams and a penalty function for incorrect word order

Meteor ¼ Fmeanð1� PenaltyÞ; (20)

where Fmean is computed with unigram precision (P ) and
unigram recall (R)
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Fmean ¼ 10PR

Rþ 9P
; (21)

and Penalty is levied for fragmented matches as the ratio of
matched chunk number to matched unigram number

Penalty ¼ 0:5 � ð #chunks

#unigrams matched
Þ3: (22)

4.2 Comparison Methods

We evaluate the proposed ATOM against baseline models
including the state-of-the-art approaches. We divide them
into two groups: 1) Retrieval-based approach: NNGen [7];
and 2) Generation-based approach: NMT [8], [15], [16], Ptr-
Net [61], CODISUM [50] and Commit2Vec [62]. For the imple-
mentation, we reproduce NNGen [7] by using the same algo-
rithm and settings according to the original paper. The source
code of NMT , Ptr-Net and CODISUM is available online
[63], [64], [65] and we utilize the default settings described in
the corresponding papers. For Commit2Vec, we try our best
to replicate the code for commit message generation accord-
ing to the paper and make the replication publicly available
[13] The details of these approaches are illustrated below.

� NNGen [7]. NNGen is a retrieval-based approach
which retrieves the most similar top-k diffs from
the training dataset based on a bag-of-words [66]
model and prioritizes the diff candidates in terms
of BLEU-4 scores. NNGen regards the message of
the diffwith the highest BLEU-4 score as the result.

� NMT [8], [15], [67]. NMT adopts attention-based
RNN encoder-decoder models, described in Sec-
tion 2.4 to generate commit messages for diffs.
Jiang et al. [8] uses Bahdanau attention [30] to pro-
duce messages. Another approach Commitgen pro-
posed by Loyola et al. [15] leverages Luong [31]
attention instead of Bahdanau for commit message
generation. We compare both attention mechanisms
denoted as NMTðLuongÞ and NMTðBahdanauÞ.

� Ptr-Net [61], [68]. Ptr-Net (an abbreviation of Pointer
network) is a typical text summarization approach,
which can copy the Out-of-Vocabulary (OOV) words
such as variable and method names from source
code to the generated messages. Ptr-Net has proven

effective in generating rational commit messages for
code changes by Liu et al. [61].

� CODISUM [50]. CODISUM is the state-of-the-art
approach which employs the normalized code
changes in which the identifiers are unified with cor-
responding placeholders for learning the representa-
tions of code changes as well as combining pointer
network [68] to mitigate the OOV issue.

� Commit2Vec [62]. Commit2Vec feeds the added and
deleted AST paths to a fully-connected layer to
encode code changes for classifying security-related
commits. Although Commit2Vec is targeted at
binary classification, the encoding mode of code
changes can be adopted for various downstream
tasks including commit message generation, so we
also consider Commit2Vec as one baseline. Since the
source code is not publicly available, we tried our
best to reproduce the model according to the paper.”

4.3 Experimental Results

We present the experimental results and analysis through
the following research questions.

4.3.1 What is the Performance of ATOM Comparing

With Baseline Approaches?

Table 1 shows the results of our approach against the base-
lines. We can find that ATOM outperforms the baselines by
a significant margin. The improved models such as Ptr-Net
and CODISUM, which claimed to capture code semantics,
have lower performances. In essence, they treat code as a
flat sequence of tokens, failing to capture the semantics
behind the code. Commit2Vec, which also adopts AST paths
to represent code changes, presents lower performance than
ATOM in terms of all the evaluation metrics. The lower per-
formance may be attributed to that Commit2Vec utilizes a
fully-connected layer to represent code changes and could
fail to capture the sequential information in the added/
deleted AST paths. In our proposed AST2seq, bi-directional
LSTMs are involved to incorporate the sequential informa-
tion of the added/deleted AST paths for better representing
code changes. The retrieval-based approach NNGen has a
higher performance than pure generation approaches, dem-
onstrating the effectiveness of the retrieval-based method
on message generation tasks. Finally, ATOM improves all
the baseline approaches by 30.72, 44.89, and 35.26 percent in

TABLE 1
Comparison Results With Baseline Models and Different Modules Within ATOM

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor

Baselines NMTðLuongÞ 13.12 8.01 6.11 5.23 12.73 10.37
NMTðBahdanauÞ 12.78 7.66 5.72 4.81 11.95 9.87
NNGen 16.91 12.01 10.03 8.04 15.20 13.68
Ptr-Net 5.80 1.72 0.73 0.45 7.61 4.98
CODISUM 7.82 3.61 2.22 1.75 9.87 8.35
Commit2Vec 12.72 7.78 6.09 5.38 13.54 10.43

Ours ATOM Gen 15.97 10.70 8.83 7.35 14.80 11.82
ATOM Ret 17.74 12.65 10.55 8.52 15.93 14.35
ATOM 23.88 15.61 12.17 10.51 22.02 18.51
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terms of BLEU-4, ROUGE-L, and Meteor respectively. This
can be attributed to that ATOM can effectively integrate the
advantages of generation and retrieval modules.

Answer to RQ1. In summary, ATOM improves the baseline
approaches by 30.72, 44.89, 35.26 percent in terms of BLEU-
4, ROUGE-L, and Meteor respectively.

4.3.2 What is the Impact of Individual Modules on the

Performance of ATOM?

Wealso perform experiments to evaluate the impact of individ-
ual generation module and retrieval module on the generated
commit messages, with the results shown in Table 1. No rank-
ingmodel is included in the two variants of ATOM.We denote
the results produced only by the retrievalmodule as ATOMRet,
which uses TF-IDF to retrieve themost similar commitmessage
(see Section 3.4), and generation module as ATOMGen, which
only uses AST2seq for commit message generation (see Sec-
tion 3.3). We find that the performance of ATOMRet is slightly
higher than ATOMGen, but the overall performance is still
lower than the combinedmodel ATOM. The gains achieved by
our hybrid ranking module range from 12.76 to 56.58 percent
in terms of BLEU-4, ROUGE-L and Meteor. Hence, ATOM
incorporates the retrieval results into the generated results by
the hybrid ranking module will further boost the performance.
In addition, ATOMGen achieves the best performance among
all the generation approaches, i.e., NMT, Ptr-Net, and CODI-
SUM, which proves that utilizing AST to learn code semantics
is more powerful than simple sequential models. Finally, com-
pared with the retrieval-based approach NNGen, ATOMRet

has slightly better performance, sincewe retrieve themost simi-
lar commit message based on the weight of tokens. Hence,
some important tokens with low frequency will be considered,
which is superior toNNGen.

As ATOM outputs the commit messages produced by
either generation or retrieval module, we also analyze the
proportions of the messages from each module, with statistics
shown in Table 2. In a total of 14,674 testing samples, 8,168 of
the results are from the retrieval module, accounting for 55.66
percent of the entire testing corpus and the remaining 6,506
are from the generation module (44.34 percent). Based on the
statistics, we can conclude that both retrieval and generation
modules are helpful for accurate commit message generation,
and they are complementary to each other.

Answer to RQ2. In summary, ATOM incorporates the
retrieval results into generation module to boost the final per-
formance, and the improvement range from 12.76 to 56.58 per-
cent in BLEU-4. Furthermore, among all the generation
approaches, our proposed AST2seq can learn more semantics
in the commits to produce high-quality messages.

4.3.3 How Accurate is AST2seq Under a Different

Number of Paths?

Our generation module AST2seq encodes AST paths based on
diffs to represent code changes, however, the number of paths
vary depending on the length ofdiffs. In this paper,we set the
max number of paths to 80 for the added and deletedASTs during
training respectively. From Fig. 8, we can see that nearly 80 per-
cent of commits have fewer than 80 AST paths in our dataset. In
this RQ, we analyze the impact of different numbers of AST
paths on the model performance. Specifically, we truncate the
ASTswith longer paths to be the experimental number of ASTs.
For example, to examine the results when taking the number of
AST paths as 30, we randomly select 30 paths for the ASTs with
real paths larger than 30. The results are illustrated in Table 3.
As can be seen, the optimal value of the path number in our
experiment is 80 and BLEU-4, ROUGE(1,2,L) and Meteor
achieves 7.35, 16.69, 6.23, 14.80 and 11.82 respectively. Further-
more, few path numbers tend to showworse results, e.g., when
the path is set as 30, the performance decreases dramatically to
4.27. It can be attributed to fewer paths have limited capability
in representing code changes. Increasing paths to over 100 do
not result in continuously improvedperformance and the scores
show a slight decrease when the paths augmented from 200 to
300. In addition, large numbers of paths will be a heavy burden
formodel training.Hence,we can conclude that 80 is an optimal
value to representdiffs.

Answer to RQ3. Overall, the optimal value of AST paths for
effectively representing diffs is 80. Adding fewer or more
paths cannot contribute much to the performance.

4.3.4 What is the Impact of Different Ranking Methods?

ATOM designs a ConvNet to incorporate the output of
retrieval module into generation module AST2seq to get bet-
ter results. However, the hybrid ranking module can be
regarded as a regression problem, and be solved with other

TABLE 2
Percentage of Final Results Prioritized From Retrieved and

Generated Messages

Modules Number Percentage (%)

Retrieval 8,168 55.66%
Generation 6,506 44.34%

Fig. 8. The distribution of AST paths shown in the dataset. Each bar repre-
sents the number of commits that has the number of AST paths in a specific
interval. For example, the leftmost blue bar represents almost 30,000 com-
mits in our dataset have less than 10 addedASTpaths by our preprocess.

Fig. 7. Architecture of ConvNet.
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alternatives. In this section, we evaluate the performance of
different methods for the ranking module. We choose
XGBoost [46], Support Vector Regression (SVR) [69], GRU
[32] and LSTM [29] with or without Attention Mechanism
as the baselines for ranking. We compute tf-idf scores for
the tokens in messages and diffs as features for training
XGBoost and SVR. For the other baselines, we concatenate
the hidden states of messages and diffs as the feature rep-
resentations and then fed into a fully-connected layer for
predicting the relevance score. The training loss functions
are similar to the definition in ConvNet and all the hyper-
parameters are well-tuned by grid search [58]. The compari-
son results are shown in Table 4. We can find that deep
learning methods i.e., GRU, LSTM, LSTM+Att, outperform
machine learning methods i.e., XGBoost, SVR. Specifically,
XGBoost presents a better performance as compared to SVR
as it combines a set of classification and regression trees
(CART) [70] to gradually reduce prediction errors by each
iteration. The superior performance of ConvNet is because
ConvNet adopts the similarity matching matrix (Sec-
tion 3.5.1) to directly capture the relevance between diffs
and candidate messages, for message ranking instead of
concatenating their respective representations.

Answer to RQ4. For predicting relevance between candidate
messages produced by generation module and retrieval module,
ConvNet is superior to traditional machine learning models,
e.g., XGBoost and SVR, and sequential deep learning models,
e.g., GRU and LSTM.

4.4 Human Study

We conduct a human evaluation to evaluate ATOM with
the best retrieval model NNGen [7] and the best generation
model NMTðLuongÞ [15]. We invite 4 PhD students and 2 mas-
ter students from the department of computer science to

participate in our survey. None of the participants is co-
authors of this paper and they all have software develop-
ment experience in Java programming language (raging 1 �
5 years).

4.4.1 Survey Design

We randomly selected 100 commits from the test dataset for
each participant to read and assess. In our questionnaire,
each question first presents the code changes of one commit,
i.e., its diff, its reference message, and messages produced
by NNGen, NMTðLuongÞ, and ATOM respectively. Each par-
ticipant is asked to give three quality scores between 0 to 4
to indicate the semantic similarities between the reference
message and the three generated messages. Lower scores
mean the generated messages are less identical to the refer-
ence messages. Fig. 9 shows one question in our survey.
Participants are told the first message is the reference mes-
sage, but the others are not aware of which message is gen-
erated by which approach and the three messages are
randomly ordered. They are asked to score each generated
message separately. Furthermore, we provide the commit
id to help participants to search related information through
the Internet.

4.4.2 Survey Results

Each code change and commit message pair is evaluated by
6 participants. Our scoring criterion is listed at the begin-
ning of each questionnaire to guide participants, which fol-
lows Liu et al.’s work [7], e.g., score 0 means two messages
have no shared tokens and score 1 denotes they have some
shared tokens, but without semantic similarity. Score 2 can
have some similar information but lacking important parts
and score 3, 4 denotes two messages are very similar in
semantics or even identical. We finally obtain 600 pairs of
scores from our human evaluation. Each pair contains corre-
sponding scores for the messages generated by NMTðLuongÞ,
NNGen, and ATOM, respectively. Table 5 shows the score
distribution of the generated commit messages based on the
three methods. We can find that ATOM receives the best
score and improve the average scores of NMTðLuongÞ (1.32)

TABLE 3
The Performance of Path Set on AST2seq

# Path BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor

30 11.53 6.57 4.80 4.27 13.66 10.22
50 13.67 8.70 6.83 5.96 13.92 10.89
80 15.97 10.70 8.83 7.35 14.80 11.82
100 15.11 10.01 8.19 7.09 14.34 11.42
200 13.89 8.83 6.88 6.07 14.01 11.01
300 13.72 8.77 6.85 6.04 13.95 10.99

The left column represents the path number for added and deleted paths
separately.

TABLE 4
The Performance of Different Ranking Methods

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor

XGBoost 17.61 12.21 10.01 8.93 15.48 13.82
SVR 16.99 11.83 9.74 8.73 15.22 13.46
GRU 17.64 12.48 10.37 9.34 15.72 14.10
LSTM 17.70 12.49 10.36 9.32 15.85 14.18
LSTM+Att 17.74 12.51 10.37 9.33 15.82 14.16
ConvNet 23.88 15.61 12.17 10.51 22.02 18.51

Fig. 9. A case of the questionnaire, provided with RAW Diff, followed by
Reference Message and Generated Messages to score. We also pro-
vide commit id in case of participants to search on the Internet.
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and NNGen (1.59) to 1.75. Furthermore, our approach can
generate more high-quality messages (scores 
 3) than
NNGen and NMTðLuongÞ. By comparing with the quantita-
tive evaluation results of the 100 sampled commits, i.e., the
BLEU-4 scores listed in the last column of Table 5, we can
observe that they are consistent with the human ranking
results. We then employ Pearson Correlation Coefficient
(PCC) [71] to compute the correlations between the manual
annotations and corresponding BLEU-4 scores for the 100
commits. The results also show that the messages generated
by ATOM receive the most consistent scores between
human study and the automated evaluation, with PCC
score at 0.21. For the messages generated by NNGen and
NMTðLuongÞ, the PCC scores are relatively lower, at 0.17 and
0.06, respectively.

We also conduct inter-rater agreement analysis [72] on
the manual annotations to observe the consistency among
participants. We find that the agreement rates for the stud-
ied three approaches NNGen, NMTðLuongÞ, and ATOM are
51.78, 45.32, and 62.60 percent, respectively. Considering
each commit is annotated by six participants and the diffi-
culty of the task, the agreement rates are reasonable and
acceptable [7]. The result also implies that the generated
messages by ATOM present the highest quality among all
the generated messages.

Overall, by our human study, we can conclude that ATOM
can produce more semantically related results with the
ground-truths.

4.5 Examples

We show some examples to analyze the strengths and
weaknesses of ATOM. Two examples of the generated

messages by ATOM, NNGen, NMTðLuongÞ, and the ground
truth are illustrated in Table 6. From Example 1, we can find
that both messages generated by NNGen and NMTðLuongÞ
fail to describe the code change. For NNGen, since it
directly recommends the message of the diff from the
training set, it may fail when no relevant diffs appear in
the training set. The generated message by NNGen contains
words such as “camel3” and “npe” which are obviously
unrelated to the diff. For NMTðLuongÞ, it uses a sequence of
code tokens as input, which may not accurately capture the
semantics of a code change. As shown in Example 1,
NMTðLuongÞ does not recognize that the diff is used to fix
test. In contract, ATOM utilizes ASTs to capture the seman-
tics of the diff and can generate a more accurate commit
message.

As shown in Example 2 of Table 6, all the generated mes-
sages fail to detail that the code change is related to
“jmstype header”. This may be because the textual informa-
tion, e.g., logs, in code changes is not well exploited and
attended. In future, we will adopt text mining techniques
such as part-of-speech analysis to fully capture the seman-
tics in textual information of diffs.

5 DISCUSSION

In this section, we describe the strengths of AST2seq as com-
pared to NMT approaches, then provide more details about
our benchmark compared with Jiang’s [8] , and present the
difference with Code2seq and Commit2Vec. Then we give a
discussion about OOV issue in ATOM and finally discuss
the limitations of ATOM.

5.1 Strengths of AST2seq

Previous studies, e.g., NMT [8], [15], Ptr-Net [61] treated
diff as a flat sequence of tokens, which ignored code
semantic information. To address this limitation, CODI-
SUM [50] extracted code structure and code semantics
based on identifying all the class/method/variable names
and segmenting with the corresponding placeholders. By
this way, they achieved BLEU-4 of 2.19 on Jiang’s [8] data-
set. Although they claimed that they achieved the highest
BLEU-4 over NMT methods on Jiang’s dataset, the

TABLE 5
The Score Distribution of the Generated Commit Messages by

NNGen, NMTðLuongÞ, and ATOM

Methods 0 1 2 3 4 
 3 
 2 	 1 Avg. (STD) BLEU-4 PCC

NNGen 22 28 27 15 8 23 50 50 1.59 (0.68) 8.81 0.17
NMTðLuongÞ 32 26 26 10 6 16 42 58 1.32 (0.83) 6.17 0.06
ATOM 18 25 31 16 10 26 57 43 1.75 (0.59) 10.23 0.21

The standard deviation is illustrated beside the average score.

TABLE 6
Examples of Generated Commit Messages
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performance is still far away from satisfaction, which
encourages us to do further exploration.

Many methods with the same functionality by a different
implementation tend to have different surface forms, which
is particularly common in the “For“ and “While“ state-
ments. However, NMT-based approaches essentially treat
diffs as a sequence of tokens, which hinders from captur-
ing the semantics as the diverse expression format. How-
ever, AST is a high abstraction of code snippet and it
transfers methods from plain text to tree structure. In many
cases, methods with the same functionality share similar
AST structures. Therefore, encoding AST to learn code
semantics can seem as a refinement of original source codes
and the recurring patterns might be easier to capture.

In addition, to easily capture semantics among diffs to
represent code changes, another advantage for AST2seq is
the ability to handle longer code changes. In sequence-
based approaches [8], [15], [50], [61], they need to set maxi-
mum sequence, e.g., 100 tokens in total [8] for effective
learning, which will lead to filter out a commit with too
many chunks. Hence the sequence-based models cannot
translate a commit with long sequences. However, AST2seq
can effectively address this limitation. We extract paths
between leaf nodes and combine them to represent code
changes instead of treating diffs as a flat sequence. The
number of sampled paths in added and deleted ASTs is set to
80 separately and the larger will be truncated. By this way,
AST2seq is able to handle longer diffs and the results
about the performance among different diff length are
shown in Table 7, where the left column is the diff lines
rather than token length. The BLEU-4 within 10 lines diffs
is 11.37 and it takes up 13.60 percent in the whole testset.
When diff lines increase to 100+, the performance only
decreases by 2.13, 1.92, and 2.65 in terms of BLEU-4,
ROUGE-L, and Meteor. Moreover, the performance with
lines within 50-100 is better than the lines within 10-30 and
30-50. Therefore, the performance will not decrease dramat-
ically along with the increased diff lines. Hence, AST2seq
uses ASTs to encode code changes addressing the limitation
of sequence length.

To sum up, AST2seq utilizes AST into the encoder to learn the
semantics behind the code changes and can handle longer
diffs, which is superior to the existing approaches.

5.2 Our Benchmark

We crawl our benchmark from 56 popular java projects
ranked by “star numbers“. We have devoted substantial

efforts to clean the dataset and compared with Jiang’s data-
set [8], ours is able to serve as more research purposes.

Specifically, we store commits in a format file with vari-
ous attributes including “commit_id“, “subject“, “commit
message“, “diff“, and “file_changed“. Note that the
“subject“ refers to the first sentence extracted from the com-
mit messages, which can be seen as the summary of a mes-
sage [8]. “file_changed“ is the number of files that the
current commit made.

Moreover, we also provide the extracted added/deleted
functions from commits. For each commit, we extract the
related functions. We name these functions in a format of
“project_id_positive(negative)_num.java“, where “project“
represents the commit belonging to which project, “id“ is
the hash value and “positive/negative“ denotes the added/
deleted functions and “num“ is the number of extracted
functions.

Finally, the noisy commits [7], e.g., bot messages, which
refers to messages generated by development tools and triv-
ial messages, which contains little information, have been
filtered automatically, since we keep commits modified in .
java files and these boot messages and trivial messages most
exist in configuration files, e.g., *.md, *.gitrepo. Furthermore,
we remove the same content of the commits to ensure the
benchmark has a higher quality compared with Jiang’s [8].

The benchmark contains the basic commit information
and the completed functions altered by commits. Hence
with this dataset, we can boost some other researches, e.g.,
code summarization, code recommendation, knowledge
graph construction based on commits.

The benchmark we prepared contains adequate information as
compared to Jiang’s [8], and we make it publicly available
[14] to benefit community research.

5.3 Novelty of ATOM

Our generation module AST2seq is inspired by Code2-
seq [20], however, it has the following major differences.

� Input Handling. Although Code2seq adopts ASTs to
encode source code for tasks such as code caption-
ing, code documentation, and code summarization,
it exploits function-level ASTs. For the proposed
AST2seq, only partial function fragments, i.e., code
changes, are considered for generating commit mes-
sages, which is more challenging. To construct ASTs
for the code changes, we retrieve the whole function,
including both added and deleted functions, and
extract the AST paths corresponding to the changed

TABLE 7
Results of diffs With Different Lines Rather Than Tokens

diff lines BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor Number Ratio

1-10 25.04 16.89 13.22 11.37 24.44 20.35 1996 13.60%
10-30 22.62 14.70 11.58 10.10 21.98 17.79 3435 23.41%
30-50 23.16 14.62 10.96 9.17 22.86 18.50 2652 18.07%
50-100 24.26 16.02 12.53 10.87 23.65 19.28 3670 25.01%
100+ 21.63 13.75 10.68 9.24 22.52 17.70 2921 19.90%

For example the upper left 1-10 in the diff Lines column represents the commits with at most 10 lines of diffs.
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code. To the best of our knowledge, we are the first
to incorporate ASTs for the commit message
generation.

� Model Design. Code2seq employs a bi-directional
LSTM to encode function-level ASTs. For AST2seq,
added and deleted code fragments are treated sepa-
rately. AST2seq first learns the representations of
added and deleted code based on their respective
ASTs by using two bi-directional LSTMs. Then the
code change representations, i.e., diffs, are
obtained by concatenating the two learned features.

In summary, although both AST2seq and Code2seq utilize
ASTs and bi-directional LSTM to learn code representations,
they are different in input code handling and model design.

5.4 Influence of Parameter Setting

Besides the number of AST paths (discussed in Sec-
tion 4.3.3), we also analyzed the influence of other parame-
ters, including the the embedding size [73] in AST2seq and
ConvNet, and the number of hidden size [73] in encoder
and decoder, on the model performance. The experimental
results are depicted in Fig. 10. As shown in Fig. 10a, when
the embedding sizes of AST2seq and ConvNet equal to 128,
ATOM achieves the best performance. According to
Fig. 10b, the number of hidden size in decoder can influence
the model performance more obviously than the parameter
in encoder. For example, ATOM shows a dramatic increase
when the number of hidden size in the decoder increases
from 64 to 256; however, the corresponding fluctuation for
the parameter in encoder is marginal. We define the num-
bers of hidden size in encoder and decoder as 256 due to the
good performance in the experiment.

5.5 OOV Issue

Some existing studies [50], [64] utilize strategies such as
copy mechanism [74] for alleviating the Out-Of-Vocabu-
lary (OOV) issue, i.e., some tokens in the test set have not
appeared in the fixed vocabulary built during training.
The OOV issue could lead the proposed model to generat-
ing wrong commit messages in our scenario. The copy
mechanism [74] can learn to copy some tokens directly
from the input diffs instead of only generating tokens
based on the fixed vocabulary, and thereby mitigating the
OOV issue. However, for our benchmark dataset, the
vocabulary built during training contains 90,969 unique
tokens from the diffs and commit messages, and only

1,930/14,674 (13.2 percent) samples in the test set involve
the tokens not appearing in the vocabulary, i.e., the OOV
tokens. Based on the observation, we suppose that using
strategies such as copy mechanism might not improve
much on ATOM.

5.6 Limitations

5.6.1 Model Complexity

ATOM encodes code changes based on AST to represent
code semantics and further designs a ranking module for
more accurate commit message generation. It contains two
modules involved with deep learning approaches, which
cost time and efforts to tune the best models. The complex-
ity of extracting AST paths from functions based on diffs
is far more than treating diffs as sequences during the pre-
processing. Furthermore, the output produced by the
retrieval module is incorporated into the generation module
to make the final decision, which is a complicated pipeline
and the workload is much bigger than the previous work.
Once ATOM is applied to the new benchmark, we still need
to spend time and efforts to finish the preprocessing and
model tuning. This can be considered as a limitation of
ATOM, however, it is inevitable for all deep learning
approaches and once AST2seq and ConvNet are fixed with
the best parameters, the generation process is relatively
low-cost and convenient.

We provide a deep analysis on the efficiency by compar-
ing ATOM with the best retrieval-based approach, NNGen,
and the best generation-based approach, NMTðLuongÞ. The
comparison experiments are conducted on the same server
with 36 cores and Nvidia Graphics Tesla P40 with 22 GB
memory. The comparison results are listed in Table 8. As
can be seen from the table, ATOM costs more time on train-
ing and testing than NMTðLuongÞ, which reflects the more
complexity of ATOM than NMTðLuongÞ. Although training is
unnecessary for NNGen, it spends the most time (308 secs)
on testing since GPU cannot be used for acceleration.

Although ATOM takes much time to tune the hyperpara-
meters to get a best model, once the model is fixed, its applica-
tion is efficient.

5.6.2 Dataset Partition

Split by Project. In this paper, we follow the prior studies on
commit message generation [8], [15], [16], [50], [61] by split-
ting dataset by commit. According to LeClair and
McMillan’s study on code summarization [75], splitting
dataset by “function” (in analogy with “commit” in our
study) might cause information leakage from test set proj-
ects into the training or validation sets and should be

Fig. 10. Effect of different parameter settings.

TABLE 8
Time Costs of NNGen, NMTðLuongÞ and ATOM

Methods Device Training Time Testing Time

NNGen CPU N/A 308 secs
NMTðLuongÞ Tesla P40 11 hours 188 secs
ATOM Tesla P40 16 hours 257 secs

Since NNGen does not need training, its training time is marked as “N/A”.
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avoided. Following the study, we evaluate the performance
of ATOM based on the dataset split by project instead of by
commit. We compare ATOM with the best retrieval-based
model NNGen and the best generation-based model
NMTðLuongÞ in the study.

The comparison results are illustrated in Table 9. We find
that ATOM outperforms baseline models and the perfor-
mance of all models decreases compared to the performance
when splitting dataset by commit. Although a reduced per-
formance is reasonable and expectable based on the dataset
split by project [75], the magnitude of the decline is
extremely obvious in our scenario. This indicates that split-
ting dataset by project may not be applicable for the evalua-
tion of the commit message generation task. We further
analyze the reason behind the extremely poor performance
when splitting dataset by project from three aspects:
method, task, and benchmark.

� Method. Deep learning-based models generally
require massive data to learn the prior knowledge.
When splitting the dataset by project, no prior
knowledge of the project in the testset will be learned
during training. Thus, the performance are expected
to be worse than dataset partition by commit.

� Task. The code summarization task studied in [75] is
different from code commit message generation
task. In code summarization, the Java projects in the
experimental dataset adopt some similar functions,
e.g., “setter” and “getter” [76]. So this part of knowl-
edge from other projects can be helpful for summa-
rizing code of an unknown project. However, in
code commit message generation, code changes in
one project may not appear in other projects, which
hinders the knowledge adaption from the other
projects.

� Benchmark. In the benchmark dataset, we filter out
bot messages, trivial messages, and the same sam-
ples (see Section 5.2). The filtered messages tend to
possess similar templates, e.g., “This commit
renames a file” and “Changes to a package”. Remov-
ing these messages increase the difficulty of generat-
ing commit messages based on the dataset split by
project.

Split by Timestamp. The dataset splitting strategy based on
either commit (following the prior studies [41], [50], [61] or
project would render the training and test sets mingle with
commit messages written at different timestamps. That is,
the commits in the training set may be written after some
commits in the test set, causing the model to learn “from the
future”. Such scenario may be unrealistic since “future
data” are unavailable in practice. To mitigate the issue, we
adopt another dataset splitting strategy, i.e., according to

the committed timestamps. Specifically, for each project, we
rank the commits in chronological order, and treat the earli-
est 90 percent as training set and the rest as test set. Com-
parison results based on the new dataset splitting strategy
is illustrated in Table 10. As can be seen, ATOM outper-
forms the baseline approaches with respect to all the evalua-
tion metrics. Besides, the achieved scores are relatively
lower than when splitting the dataset by commit. The
reduced performance may be because developers of one
project generally write commits for code changes related to
different functionalities at different timestamps. For exam-
ple, during a period of time, the developers may focus on
enhancing one functionality of the project, so more commits
related to this functionality are written; while for a later
period, more commits for a different functionality are
posted. Some examples are illustrated in this link [77].
Using past commits for training may hinder the trained
model to produce an accurate result for a later commit since
the later commit may be related to a new functionality.
Moreover, the developers serving for one functionality may
be changed to writing another different functionality. The
changing commit styles may also influence the prediction
accuracy of the trained model. However, the data partition
strategy can laterally verify the generalizability of a pro-
posed model for code commit message generation task, and
we encourage the future research to consider such data par-
tition strategy during evaluation.

To sum up, ATOM shows superior effectiveness than baseline
models when splitting dataset by project or timestamp. How-
ever, due to the characteristics of the commits, the best practise
to split dataset is based on commit.

5.7 Threats to Validity

One of the threats to validity is about the collected dataset.
Our dataset contains more information than Jiang’s [8] with
more volumes, but more data is always beneficial to deep
learning models. With the dataset we crawled so far, we
have already achieved the best performance, which indi-
cates the effectiveness of our proposed approach. Another
threat to validity is about human evaluation in Section 4.4.
We ask 6 participants to evaluate the quality of 100 ran-
domly selected commit messages according to the crite-
rion [7]. However, we cannot guarantee the judgements of
participants are fully in line with the criterion. Ideally, the
scores obtained from 6 participants are more reliable than
those labeled by 3 participants, which is a common strategy
adopted by prior work [7]. Furthermore, the reproduction
of NNGen [7] may introduce bias to the experimental
results. To alleviate the threat, we have tried our best to
read the paper carefully and consulted the authors about

TABLE 9
The Performance of Different Approaches Based on the Dataset

Split by Project

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor

NNGen 5.02 1.39 0.42 0.15 0.05 0.04
NMTðLuongÞ 4.48 0.98 0.00 0.00 0.04 0.03
ATOM 5.44 2.06 1.28 0.82 0.07 0.05

TABLE 10
The Performance of Different Approaches Split by Timestamp

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L Meteor

NNGen 10.28 4.83 3.15 2.49 10.34 8.41
NMTðLuongÞ 6.69 2.70 1.25 1.47 9.45 6.11
ATOM 10.87 5.99 4.19 3.53 11.14 9.53
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the details to ensure our reproduction is correct. Finally, we
only compare ATOM on our dataset with the baseline meth-
ods and get state-of-the-art performance. As Jiang’s [8] data-
set does not provide commit ids, we cannot extract the
Added and Deleted ASTs to encode changes. Hence, we can-
not verify the effectiveness of ATOM on Jiang’s dataset. But
we compared all existing generation and retrieval
approaches with ours on our benchmark to illustrate the
effectiveness of ATOM.

6 RELATED WORK

Our work is inspired by two research lines of studies,
including code commit message generation and code sum-
marization. In this section, we discuss the most related
work and compare them with ATOM.

6.1 Code Commit Message Generation

Previous commit message generation studies can be mainly
categorized into three types according to the methodology:
rule-based, retrieval-based, and deep-learning-based. Initial
studies [9], [10], [78], [79] rely on pre-defined rules or tem-
plates to establish the connections between code changes
and natural languages. For example, Buse et al. [9] use the
templates based on control flows to generate commit mes-
sages. Shen et al. [79] extract code changes based on defined
types of changed methods and corresponding formats (e.g.,
“replace <old method name> with <new method name>”
is a defined format for renaming a method). ChangeSribe
[10], [78] further takes the impact set of a commit into
account along with the commit stereotype and type of
changes using pre-defined metrics, then fills a pre-defined
commit message template with the extracted information.
Such rule-based approaches can be limited by the manually
specified rules or templates, and may work inefficiently for
the code changes not applicable to the rules.

The retrieval-based approaches [7], [11] regard a newly-
arrived diff as a query and reuse the commit messages of
the most similar code changes. Huang et al. [11] use the syn-
tactic similarity and semantic similarity of code changes as
a measurement to retrieve existing commit messages.
NNGen [7] reuses the message of the nearest neighbour by
computing the cosine similarity of diff vectors constructed
by a bag-of-words model, which extends to include both
codes changes and non-code changes. For these approaches,
simply retrieving messages as the targets cannot guarantee
the consistency of the variable/method names. Besides, the
mapping relations between diffs and commit messages
are not fully exploited.

Deep-learning-based approaches [8], [15], [50] treat code
changes and commit messages as two different languages,
and design neural machine translation (NMT) models to
translate code changes into commit messages. For example,
Jiang et al. [8] directly adopt NMT model to conduct the
translation. Jiang et al. [16] also adopt NMT model to con-
duct the translation but with all the commit messages for-
matted based on ChangeScribe [10], [78]. CODISUM [50]
propose to combine both code structure and code semantics
to enrich the representations of code changes for a better
generation, and use CopyNet to mitigate the OOV issue.
Although the results for these approaches are promising,

they still do not explicitly bridge the gap between code and
natural languages.

Compared with the above works, ATOM encodes ASTs
to represent code changes and fully takes advantages from
both retrieved methods and deep-learning-based methods
by involving a hybrid ranking module to boost the perfor-
mance further, resulting in more accurate commit message
generation than all the above works.

6.2 Code Summarization

Code summarization aims to generate brief natural lan-
guage descriptions for code snippet and it evolves from
rule-based [80], [81], [82], retrieval-based [83], [84], [85] to
learning-based [86], [87], [88] approaches. Pre-defining
some basic rules based on the important content from codes
is one of the most common approaches for the generation.
Sridhara et al. [81] design a framework with traditional pro-
gram and natural language analysis to tokenize function/
variable names to summarize the Java method. Further-
more, based on this framework, Moreno et al. [82] predefine
rules to combine information to generate comments for Java
classes.

Information retrieval approaches are widely used in sum-
mary generation tasks. Haiduc et al. [83] use Vector Space
Model (VSM) and Latent Semantic Indexing (LSI), an infor-
mation retrieval method, to index top-k terms from a func-
tion and find the most similar terms based on cosine
distances as the summary. Rodeghero et al. [89] further
improve the performance by improving the subset selection
process by modifying the weights of the keywords from the
codes based on the result of an eye-tracking study. McBurney
et al. [90] apply topic modelling and design a hierarchy to
organize the topics in source code, with more general topics
near the top of the hierarchy to select keywords and topics as
code summaries. Clocim [85] applies code clone detection to
find similar codes and uses its comments directly.

In addition, some researchers try to generate summaries
by learning-based approaches. Iyer et al. [87] propose
CODE-NN, an attentional LSTM encoder-decoder network
to generate C# and SQL descriptions. Hu et al. [91] further
incorporate an additional encoder layer into the NMT
model to learn API sequence knowledge. They first train an
API sequence encoder using an external dataset, then apply
the learned representation into the encoder-decoder model
to assist generation. Wan et al. [88] also incorporate an
abstract syntax tree as well as sequential content of code
snippets into a deep reinforcement learning framework to
translate python code snippets. Code2seq [20] model repre-
sents a code snippet as the set of paths in its AST to decode
language sequences and the results outperform state-of-the-
art NMT models. Different from code summarization, we
aim at generating code changes, a higher target compared
with the whole function summary.

7 CONCLUSION

Automatically generating commit messages is necessitated.
Existing studies either translate diffs with sequence-based
methods or retrieval-based methods. In this paper, we pro-
pose our ATOM to encode AST paths of diffs for code
representation to generate commit messages. Furthermore,
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we integrate the advantages of retrieval-based models by a
hybrid ranking module to prioritize the most accurate mes-
sage from both retrieved and generated messages. Substan-
tial experiments based on our benchmark have
demonstrated the effectiveness of ATOM and ATOM
increases the state-of-the-art approaches by 30.72 percent in
BLEU-4. In future work, we plan to design a detailed speci-
fication to keep commits with higher quality and apply our
proposed approach to other tasks such as code summariza-
tion, code documentation, and even source code generation.
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